x^2+x=432

Simple and best practice solution for x^2+x=432 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+x=432 equation:



x^2+x=432
We move all terms to the left:
x^2+x-(432)=0
a = 1; b = 1; c = -432;
Δ = b2-4ac
Δ = 12-4·1·(-432)
Δ = 1729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1729}}{2*1}=\frac{-1-\sqrt{1729}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1729}}{2*1}=\frac{-1+\sqrt{1729}}{2} $

See similar equations:

| −3=−3=  43x34​ x | | 5x+7=6+2x+22 | | 63+9x-30+10x=0 | | 3x-1/4x=56 | | 21-9z+10z-20=0 | | 0*x=18 | | 2x+4/3=3x-2/2 | | 2x+4/3=3×-2/2 | | 3x+27=X+63 | | 3x-5/6=0 | | 52+20x=72+16x | | 2(6-3x)+1=25 | | 60=2x3x | | 10q=90 | | x=75/2.7*x | | 9x-3=68 | | 2c=70 | | (x)(x)(9)=68 | | 3+x=4.5 | | (k-4)^2=169 | | (k-4)2=169 | | (5x-6)=(7x+12 | | 3(4x+1)=4(9+3x) | | V=x(8-2x)(6-2x) | | 24=3/2y=36 | | x^2-2^x+19=0 | | X^2-34x+81=0 | | V(a)=(8-2a)(6a-2a) | | x=74/2.7*x | | 4x+3+2x+3=90 | | 5x+7/2=3x-14 | | -8+20x=22x-66 |

Equations solver categories